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1. Introduction

There has been a growing interest for solutions in AdS spacetime during the last decade,

largely motivated by the AdS/CFT correspondence [1, 2]. This correspondence relates the

geometry of an asymptotically AdS space with a conformal field theory defined on the

background of the conformal boundary of the AdS space. In this context, black objects

are of great interest; for example, the Hawking-Page phase transition [3] between the

five dimensional spherically symmetric black holes and the thermal AdS background was

interpreted by Witten, through AdS/CFT, as a thermal phase transition from a confining

to a deconfining phase in the dual four dimensional N = 4 super Yang-Mills theory [4].

In four dimensional asymptotically flat space, the uniqueness theorem guaranties that

the horizon topology of black objects is S2. In higher dimensions, this theorem does not

hold and several black objects with various topology have already been constructed. Among

them, let us mention the black strings [5] of horizon topology Sd−3 × S1, black rings [6]

(toroidal horizon topology), black holes (Sd−3 horizon topology) [7] and their generalisation

with charge, rotation, cosmological constant, etc.

In 1993, Gregory and Laflamme [8] showed that black strings are unstable toward

long wavelength perturbations in asymptotically locally flat space (see [9] for a review).

Just after that discovery, it was widely believed that the end point of the black string

instability in asymptotically locally flat spacetime should be a caged black hole, where the

asymptotical space in d+1 dimensions is Md×S1 (with Md the d-dimensional Minkowski

space), but it was argued [10] that the transition between a black string and a caged
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black hole would take an infinite proper time at the horizon and thus even ’more‘ for an

observer lying outside the horizon. This motivated the study of extended black objects

which are not translationally invariant along the S1 coordinate, namely the non uniform

black strings, first in a perturbative approach [11] (see also [12]) and later in the full non

linear regime [13]. The resulting thermodynamical phase diagram [14] is now well known

although dynamical phase transitions are still to be constructed. In this diagram, the non

uniform and the caged black hole branch meet at the merger point, where a topological

phase transition is expected to occur.

More recently, the question of the black strings instability in asymptotically locally

AdS spacetime has been addressed and it has been argued that this instability should

persist in asymptotically locally AdS space in any number of dimensions for small AdS

black strings [15] where the ratio rh/ℓ ≪ 1, with rh the horizon radius and ℓ the AdS

radius, fixed by the cosmological constant Λ. Note that there exists another phase of

AdS black strings, namely large AdS black strings [16, 17], where rh/ℓ ≥ 1 which are

thermodynamically and dynamically stable [15]. As already noticed in [3], AdS space

acts like a confining box: when the ratio rh/ℓ becomes larger than some critical values,

the wavelength of the instable modes cannot fit the ’AdS box’ and thus the configuration

is stable.

However, in asymptotically locally AdS spaces, much less is known about the coun-

terpart of the solutions of Λ = 0 Kaluza-Klein black objects. The evolution of AdS black

holes has been studied in [18] but still has to be done for AdS black strings. The ther-

modynamical properties of the uniform phase is now well known [16] and non uniform

solution have been constructed in [19] in a perturbative approach and in 6 dimensions. In

order to construct a phase diagram in AdS, one has to consider various stationary solutions

and compare their thermodynamical properties since these stationary solutions should be

the equilibrium configurations. This could give some clues on the endpoint of dynamical

evolution and phase transitions between different black objects in AdS.

In this paper, we consider perturbative non uniform black strings in asymptotically

locally AdS spacetime for arbitrary number of dimensions. The decay of the non uniform

modes in arbitrary number of dimension is sharp so it is difficult to construct the global

conserved quantities. Instead, we focus on the horizon thermodynamical properties such

as the entropy and the Hawking temperature in order to investigate the possible existence

of new stable phases of non uniform black strings; namely long black strings, which should

be the counterparts of big AdS black strings. It will turn out that this stable phase indeed

exists and appears only in the non uniform phase. We also construct the non perturbative

non uniform black string solution for some different values of the cosmological constant.

This paper is organised as follows: in section 2, we present the model. In section

3, we give the near horizon and asymptotical solution to the equations while we present

the boundary conditions and numerical technique in section 4. Section 5 is devoted to

the thermodynamical properties of the solutions, we present the numerical results and

give a discussion of the solutions in section 6. Finally we present the solution to the non

perturbative problem in section 7 and discuss the properties of the non uniform black

string in the regime where the cosmological constant is small. The results are summarized

in the conclusion.
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2. The model

We consider the d-dimensional Einstein-Hilbert action supplemented with the Hawking-

Gibbons boundary terms and a negative cosmological constant:

S =
1

16πG

∫

M

√−g

(

R +
(d − 1)(d − 2)

ℓ2

)

ddx +
1

8πG

∫

∂M

√
−hKdd−1x, (2.1)

where G is the d-dimensional Newton constant, g is the determinant of the metric on the

spacetime manifold M, h the determinant of the induced metric on the boundary manifold

∂M, R is the scalar curvature, ℓ is the AdS radius and K is the trace of the extrinsic

curvature of the boundary spacetime. In what follows, we will work in geometrical units

where G = 1.

We supplement the action (2.1) with the following ansatz, which is relevant in the

study of non uniform black strings [11]:

ds2 = −b(r)e2A(r,z)dt2 + e2B(r,z)

(

dr2

f(r)
+ a(r)dz2

)

+ e2C(r,z)r2dΩ2
d−3, (2.2)

where dΩ2
d−3 is the square of the line element on the unit (d − 3)-sphere and z ∈ [0, L], L

being a real number.

The ansatz (2.2) leads to partial differential equations which are technically difficult

to deal with. In order to obtain a set of ordinary differential equations, we develop the non

uniformity (the z depending part) in a Fourier series and in term of a small parameter ǫ:

X(r, z) = ǫX1(r) cos(kz) + ǫ2 (X0(r) + X2(r) cos(2kz)) + O(ǫ)3, (2.3)

where X generically denotes A,B,C and k = 2π/L.

With the expansion (2.3), we obtain ordinary differential equations at each order in

ǫ and for each independent Fourier mode. The equations at order ǫ0 are the background

equations; the solutions of these equations have been studied in [16]. The order ǫ1 leads to

the linear stability of the background and the solutions have been constructed in [15].

In order ǫ2, there are two independent modes: the X0 and the X2 fields. The X0 modes

are the backreacting fields and have been studied in [19] for d = 6. They are relevant for

the first corrections on thermodynamical quantities of non uniform black strings. The X2

modes are massive modes and do not contribute in thermodynamical corrections (at first

relevant corrections)1. In addition, the X2 modes are independent of the X0 fields since

they are different Fourier modes; that’s the reason why we will consider only the X0 fields

at order ǫ2 in this paper.

The equations for the background can be found in [16] and the equations for the first

order are in [15]. The equations for the second order in ǫ are quite long and we prefer

not writing them here but they are straightforward to obtain. Let us just remind that it

is possible to solve algebraically for the first order field B1 (resp. second order field B0)

1thermodynamical quantities involve an integration over z from 0 to 2π/L, thus suppressing X2 terms,

see [19].
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as a function of the other first order field (resp. second order fields). Let mention also

that the equations for the backreacting fields present the same shift invariance than in the

6-dimensional case, X0 → X0 + const.

3. Near-horizon and asymptotic expansion

In order to compute the asymptotic expansion, two cases must be distinguished: the case

of odd number of dimensions and the case of even number of dimensions. In odd number of

dimension, log terms arise in the background asymptotic expansion while in even number

of dimensions, there are no log terms in the expansion; these terms might have a nontrivial

repercussion on the first and second order fields, but it turns out that at the leading order

of the asymptotic expansion, it is not the case.

The background fields obey the Fefferman-Graham expansion which can be found

in [16] for the case of interest. Let us just give the leading order expansion of the back-

ground fields:

a(r) ≈ b(r) ≈ f(r) =
r2

ℓ2
+ O(1), (3.1)

which is the appropriate asymptotic behaviour of a locally asymptotically AdS spacetime.

In such an asymptotic background, the leading order of the asymptotic expansion for

the first order fields is given by:

A1(r) = −(d − 3)γ1

(

ℓ

r

)d−1

+ O
(

ℓ

r

)d+2

, C1(r) = γ1

(

ℓ

r

)d−1

+ O
(

ℓ

r

)d+2

, (3.2)

with γ1 a real constant to be determined numerically. The influence of the log terms we

mentioned shows up in higher order terms in the expansion and is not relevant for our

analysis. In fact, this is not the most general asymptotic expansion for the first order

fields. The most general expansion contains constant terms and terms of order r−(d−4).

These terms cancel once the boundary condition is imposed (A1(r) → 0, C1(r) → 0 when

r → ∞; see next section).

The backreacting fields A0, C0 follow the same pattern:

A0(r) = −(d − 3)γ0

(

ℓ

r

)d−1

+ O
(

ℓ

r

)d+2

, C0(r) = γ0

(

ℓ

r

)d−1

+ O
(

ℓ

r

)d+2

, (3.3)

where γ0 is a real constant, also to be determined numerically. Once again, in the most

general expansion, there are lower order terms which would give infinite contribution to

the mass and thus are unphysical [19].

Higher order terms for first and second order fields can be obtained after a straight-

forward calculation.

The near horizon behaviour of the background fields and first order are reminded here:

a(r) = ah +
2ah (d − 1) rh

(d − 4) ℓ2 + (d − 1) r2
h

(r − rh)

+
2ah (d − 1)2 r2

h
(

(d − 4) ℓ2 + (d − 1) r2
h

)2

(r − rh)2

2
+ O(r − rh)3,
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b(r) = bh(r − rh) +
bh (d − 4)

(

(d − 3) ℓ2 + (d − 1) r2
h

)

(d − 4) ℓ2rh + (d − 1) r3
h

(r − rh)2

2
+ O(r − rh)3, (3.4)

f(r) =

(

(d − 1))

rh

+
(d − 4)rh

ℓ2

)

(r − rh)

−(d − 4)

(

d − 1

ℓ2
+

d − 3

r2
h

)

(r − rh)2

2
+ O(r − rh)3;

A1(r) = A10 + A11(r − rh) + O(r − rh)2 , C1(r) = C10 + C11(r − rh) + O(r − rh)2,

where

A11 = −2ah (A10 − C10) (d − 4) (d − 3) ℓ2

3ahrh

(

(d − 4) ℓ2 + (d − 1) r2
h

)

+

(

2ahA10 (d − 5) (d − 1) + (−2A10 + C10 (d − 3)) k2ℓ2
)

r2
h

3ahrh

(

(d − 4) ℓ2 + (d − 1) r2
h

)

C11 =
2 (A10 − C10)

rh

+
C10

(

2ah (d − 1) + k2ℓ2
)

rh

ah (d − 4) ℓ2 + ah (d − 1) r2
h

,

and ah, bh are normalisation constants to be fixed such that the background fields fol-

low (3.1); A10, C10 are real constants. Note that due to the linearity of the first order

equation, either A10 or C10 can be fixed arbitrarily, only the ratio A10/C10 is non arbitrary.

The second order fields have the following near-horizon expansion:

A0(r) = A00 + A01(r − rh) + O(r − rh)2 , C0(r) = C00 + C01(r − rh) + O(r − rh)2, (3.5)

where A00, C00 are to be fixed using the invariance under A0 → A0+const, C0 → C0+const

such that the fields A0, C0 decay to 0 at infinity, C01 is an arbitrary real constant and

A01 = − ahC01 (d − 4) (d − 3) ℓ2

3ah (d − 4) ℓ2 + 3ah (d − 1) r2
h

(3.6)

+

(

A2
10 + 2A10C10 (d − 3) − C2

10 (d − 3)
)

k2ℓ2rh + ahC01 (d − 3) (d − 1) r2
h

3ah (d − 4) ℓ2 + 3ah (d − 1) r2
h

.

This expression for A01 is obtained by imposing regularity of the equation in the near

horizon region; if A01 is not chosen to be the above expression, there will exist a diverging

term proportional to (r − rh)−1 in the near horizon limit.

4. Boundary conditions and numerical technique

The numerical technique follows that of reference [19]: we first integrate the background

fields with appropriate boundary conditions (see ref. [16]) then we integrate the first order

fields (see [15] for the boundary conditions). The backreacting fields are then integrated
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with the following initial conditions:

A0(rh) = α0, (4.1)

C(rh) = χ0,

C ′(rh) = χ1

A′
0(rh) = − ahχ1 (d − 4) (d − 3) ℓ2

3ah (d − 4) ℓ2 + 3ah (d − 1) r2
h

+

(

A2
10 + 2A10C10 (d − 3) − C2

10 (d − 3)
)

k2ℓ2rh + ahχ1 (d − 3) (d − 1) r2
h

3ah (d − 4) ℓ2 + 3ah (d − 1) r2
h

,

where α0, χ0 are arbitrary constant to be fixed a posteriori using the shift invariance

A0(r) → A0(r) + const, C0(r) → C0(r) + const, while χ1 is a constant which is tuned

such that the fields A0, C0 follow the decay (3.3).

In practice, we integrate the background and the first order with the solver Colsys [20]

and the second order is integrated using a Runge Kutta algorithm at order 4. The inte-

gration is carried out from the horizon radius, rh to some R ≫ rh. The fields A0, C0 follow

the asymptotic (3.3) if RC ′
0(R) + (d − 1)C0(R) = 0. The problem here is that C0 can

always be shifted by an arbitrary constant so we impose the decay (3.3) transposed to the

derivative of C0:

RC ′′
0 (R) + dC ′

0(R) = 0, (4.2)

the value of C ′′
0 (R) being obtained using the field equations.

The value of RC ′′
0 (R) + dC ′

0(R) is a function of χ1, say C(χ1). The backreacting fields

will follow the asymptotic decay (3.3) if χ1 is chosen to be a root of C(χ1). We used the

Newton algorithm in order to find the value of χ1 such that C(χ1) = 0.

5. Thermodynamical properties

The entropy is given by a quarter of the event horizon area and the first relevant correction

to the entropy coming from the non uniformity appears at the backreacting level. Let us

write the entropy as S = S0 + ǫ2δS, S0 being the entropy of the uniform black string, δS

the correction from the backreaction. Then,

S0 =
2π

k

Ωd−3r
d−3
h

√
ah

4
(5.1)

δS/S0 =
ah

(

−A2
10 + 2A10C10(d − 3) +

(

4C00 + C2
10(d − 3)

)

(d − 3)
)

(d − 1)

4ah(d − 1)

+
C10(A10 + C10)(d − 3)k2ℓ2

4ah(d − 1)
,

where Ωd−3 is the surface of the unit (d − 3)-sphere and the background quantities are

evaluated with the length L = 2π/k, k being determined from the solution to the first

order equations.
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The temperature at the horizon can be computed demanding regularity in the Eu-

clidean section and is given by:

TH =
1

4π

√

b1

rhℓ2

(

(d − 1)r2
h + (d − 4)ℓ2

)

, (5.2)

δTh/TH =
2a0(d − 1)

(

2A00 + A2
10

)

+ (d − 3)(A10 − C10)C10k
2ℓ2

4a0(d − 1)
,

where TH is the background temperature and δTH the corrections from the backreaction,

the temperature of the non uniform phase being denoted by TH + ǫ2δTH .

The mass and tension can be computed using the counterterm procedure [21]. We

refer the reader to [16, 19] for the details of the technique and an application to uniform

asymptotically AdS black string and perturbative non uniform AdS black strings in 6 di-

mensions. Let us notice that there exists another procedure, free of ambiguities that might

arise during the standard counterterm procedure, namely the Kounterterm procedure [22].

However, the thermodynamical quantities involved in these procedures are difficult

to extract from the numerical solution in the general d-dimensional case because of the

backreacting fields asymptotical decay (3.3). Instead, it is in principle possible to compute

the mass by integrating the first law with fixed asymptotical length (L fixed) and to use the

Smarr formula [16] to extract the tension. In practice, this procedure works well except for

very small value of the horizon radius (with AdS length fixed to one), which is the region of

interest in the perturbative approach. We shall come back to this point in the discussion.

For our purpose, it is sufficient to evaluate only the entropy and Hawking temperature

(with corrections arising form the backreactions).

In order to investigate the thermodynamical stability of the non uniform phase, we

consider the specific heat, defined as the derivative of the entropy with respect to the

temperature. In the case of perturbative non uniform black strings at order ǫ2, the specific

heat reduces to

CNU
p =

δS

δTH

, (5.3)

with δS and δTH as defined above.

This quantity gives the variation of entropy whith respect to the Hawking temperature

in the non uniform phase at the merger point; non uniform solutions with Cp < 0 are

thermodynamically unstable, while solutions with Cp > 0 are thermodynamically stable.

Consequently, in order to investigate the existence of a stable phase, it is sufficient to

compare the sign of δS and δTH .

6. Numerical results and discussion

We integrated the field equations for values of d from 5 to 15. We considered only perturba-

tive non uniform black strings with critical length. The critical length is well defined only

for small AdS black strings (for big AdS black strings, the critical wavenumer k becomes

imaginary and so does the critical length L = 2π/k). Our results show that for every

– 7 –
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Figure 1: The correction on the entropy δS as a function of the correction on the Hawking

temperature δTH for various number of dimensions. There are points on this figure with δTH > 0

corresponding to large value of µ1. This stable phase occurs for small value of k (i.e. large value

of L) and is the analogue of the big AdS black string, with the large length being now in the S1

direction. The small figure in upper left box is a zoom of the region with δTH > 0.

d 6 7 8 9 10 11 12

µcs
1 8.66409 8.76464 9.02511 9.3052 9.56981 9.80617 10.1825

Table 1: The value of the ratio µcs
1 = L/ℓ where the stable phase occurs for various d.

number of dimensions considered, there is a phase of non uniform black string presenting

a positive specific heat (figure 1).

This phase arises for small values of the critical wave number, i.e. large value of the

length (with ℓ fixed). This is the analogue of the small-big black strings or black hole in

AdS where the relevant parameter for the thermodynamical stability was r0/ℓ. Here, the

relevant parameter is µ1 = L/ℓ; short non uniform black strings solutions with µ1 ≪ 1

are thermodynamically unstable while long non uniform black strings with µ1 ≈ 1 are

thermodynamically stable.

Note that this effect is not present for the uniform phase. In the uniform phase, the

length enters only as an overall factor in the thermodynamical quantities. In the non

uniform phase, the thermodynamical quantities depend on the length in a non trivial way

(via k = 2π/L). Let us stress the fact that these short-long black strings are present in the

small AdS phase, since it is the phase we are dealing with. We expect this property to be

a generic feature of non uniform black strings in arbitrary number of dimensions.

Figure 2 shows the direction of the phase transition in a S −TH diagram for d = 9. In

– 8 –
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Figure 2: The phase diagram in the S − TH plane for d = 9. The background and the direction

of the corrections for some value of the rescaled length are shown. The same pattern holds for all

the number of dimension we considered.

the short black string phase (i.e. with L ≪ ℓ), the entropy increases and the temperature

decreases along the non uniform phase while in the long black string phase (L ≈ ℓ) the

entropy increases and so does the temperature. Let us emphasize once again that this new

phase of non uniform black strings occurs for small black strings (r0 ≪ ℓ) since the length

is not well defined for big black strings (r0 ≈ ℓ).

We wanted to compute the mass and tension for the solutions we constructed in order to

investigate the existence of a (ℓ-depending2) critical dimension, but it turned out that these

quantities are much difficult to evaluate precisely. The problem comes from the small values

of the horizon radius: when integrating the background, we impose generically a(rh) =

1, b(rh) = f(rh) = 0, and use the arbitrariness of the a, b functions normalisation in order to

impose a, b, f → r2/ℓ2 asymptotically, a posteriori. For small value of rh, the asymptotical

region appears for larger and larger value of the radial coordinate; this introduces numerical

noise in the determination of the normalisation factors for the background functions and

thus affects the horizon quantities. Moreover, the small black string phase is defined for

rh < 1 (we are working with ℓ = 1; fixing another value of ℓ doesn’t solve the problem.).

The investigation of a critical dimension thus deserves further attention.

However, we expect this long non uniform black string phase to be relevant in the

potential existence of a ℓ-depending critical dimension, since there is a major change in the

thermodynamical properties of this phase.

2with fixed horizon radius or equivalently r0 depending, with fixed ℓ.
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7. Non uniform black string

In this section we present some preliminary results on the solution to the full non-linear

system of partial differential equations in six dimensions. These equations can obtained

starting from the ansatz (2.2), without developing the non uniformity as a Fourier Series.

However, demanding regularity on the horizon leads to non trivial relations between the

functions A,B,C.

Changing the parametrisation of the background (where A = B = C = 0) to a

conformal-like gauge,

ds2 = −b̃(r̃)dt2 +
r̃2dr̃2

(r2
h + r̃2)f̃(r̃)

+ ã(r̃)dz2 + (r2
h + r̃2)dΩ2

3, (7.1)

and using a non uniform ansatz in this gauge,

ds2 = −b̃(r̃)e2Ã(r̃,z)dt2+e2B̃(r̃,z)

(

r̃2dr̃2

(r2
h + r̃2)f̃(r̃)

+ ã(r̃)dz2

)

+(r2
h+ r̃2)e2C̃(r̃,z)dΩ2

d−3, (7.2)

leads to much simpler regularity conditions at the horizon, which will be given later.

In this parametrisation, the horizon is located at r̃ = 0 and the functions b̃ and f̃

behave like r̃2 close to the horizon. Note that the variable r̃ and the functions ã, b̃, f̃ are

related to the variable r and the functions a, b, f according to

r =
√

r2
h + r̃2 , ã(r̃) = a(r) , b̃(r̃) = b(r) , f̃(r̃) = f(r). (7.3)

The equations with the parametrisation (7.2) are given by

−5e2B̃(r̃,z)r2

ℓ2f̃(r̃)g(r̃)
− b̃′(r̃)

2rb̃(r̃)
+

ã′(r̃)b̃′(r̃)

4ã(r̃)b̃(r̃)
− b̃′(r̃)

2

4b̃(r̃)
2 +

b̃′(r̃)f̃ ′(r̃)

4b̃(r̃)f̃(r̃)
+

b̃′(r̃)g′(r̃)

b̃(r̃)g(r̃)
+

b̃′′(r̃)

2b̃(r̃)

+
r2Ã(0,1)(r̃, z)

2

L2ã(r̃)f̃(r̃)g(r̃)
+

3r2Ã(0,1)(r̃, z)C̃(0,1)(r̃, z)

L2ã(r̃)f̃(r̃)g(r̃)
+

r2Ã(0,2)(r̃, z)

L2ã(r̃)f̃(r̃)g(r̃)
− Ã(1,0)(r̃, z)

r

+
ã′(r̃)Ã(1,0)(r̃, z)

2ã(r̃)
+

b̃′(r̃)Ã(1,0)(r̃, z)

b̃(r̃)
+

f̃ ′(r̃)Ã(1,0)(r̃, z)

2f̃(r̃)
+

2g′(r̃)Ã(1,0)(r̃, z)

g(r̃)

+Ã(1,0)(r̃, z)
2
+

3b̃′(r̃)C̃(1,0)(r̃, z)

2b̃(r̃)
+3Ã(1,0)(r̃, z)C̃(1,0)(r̃, z)+Ã(2,0)(r̃, z) = 0, (7.4)

3e2B̃(r̃,z)−2C̃(r̃,z)r2

f̃(r̃)g(r̃)2
+

5e2B̃(r̃,z)r2

ℓ2f̃(r̃)g(r̃)
− ã′(r̃)

2rã(r̃)
− ã′(r̃)2

4ã(r̃)2
+

ã′(r̃)f̃ ′(r̃)

4ã(r̃)f̃(r̃)

+
ã′(r̃)g′(r̃)

4ã(r̃)g(r̃)
− 3b̃′(r̃)g′(r̃)

4b̃(r̃)g(r̃)
− 3g′(r̃)2

4g(r̃)2
+

ã′′(r̃)

2ã(r̃)
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−3r2Ã(0,1)(r̃, z)C̃(0,1)(r̃, z)

L2ã(r̃)f̃(r̃)g(r̃)
− 3r2C̃(0,1)(r̃, z)

2

L2ã(r̃)f̃(r̃)g(r̃)

+
r2B̃(0,2)(r̃, z)

L2ã(r̃)f̃(r̃)g(r̃)
− 3g′(r̃)Ã(1,0)(r̃, z)

2g(r̃)
− B̃(1,0)(r̃, z)

r
+

ã′(r̃)B̃(1,0)(r̃, z)

2ã(r̃)

+
f̃ ′(r̃)B̃(1,0)(r̃, z)

2f̃(r̃)
+

g′(r̃)B̃(1,0)(r̃, z)

2g(r̃)
− 3b̃′(r̃)C̃(1,0)(r̃, z)

2b̃(r̃)
− 3g′(r̃)C̃(1,0)(r̃, z)

g(r̃)

−3Ã(1,0)(r̃, z)C̃(1,0)(r̃, z)−3C̃(1,0)(r̃, z)
2
+B̃(2,0)(r̃, z) = 0, (7.5)

−2e2B̃(r̃,z)−2C̃(r̃,z)r2

f̃(r̃)g(r̃)2
− 5e2B̃(r̃,z)r2

ℓ2f̃(r̃)g(r̃)
− g′(r̃)

2rg(r̃)
+

ã′(r̃)g′(r̃)

4ã(r̃)g(r̃)
+

b̃′(r̃)g′(r̃)

4b̃(r̃)g(r̃)

+
f̃ ′(r̃)g′(r̃)

4f̃(r̃)g(r̃)
+

g′(r̃)2

2g(r̃)2
+

g′′(r̃)

2g(r̃)
+

r2Ã(0,1)(r̃, z)C̃(0,1)(r̃, z)

L2ã(r̃)f̃(r̃)g(r̃)
+

3r2C̃(0,1)(r̃, z)
2

L2ã(r̃)f̃(r̃)g(r̃)

+
r2C̃(0,2)(r̃, z)

L2ã(r̃)f̃(r̃)g(r̃)
+

g′(r̃)Ã(1,0)(r̃, z)

2g(r̃)
− C̃(1,0)(r̃, z)

r

+
ã′(r̃)C̃(1,0)(r̃, z)

2ã(r̃)
+

b̃′(r̃)C̃(1,0)(r̃, z)

2b̃(r̃)
+

f̃ ′(r̃)C̃(1,0)(r̃, z)

2f̃(r̃)

+
7g′(r̃)C̃(1,0)(r̃, z)

2g(r̃)
+Ã(1,0)(r̃, z)C̃(1,0)(r̃, z)+3C̃(1,0)(r̃, z)

2
+C̃(2,0)(r̃, z) = 0. (7.6)

The index (n,m) above the functions Ã, B̃, C̃ refer to the order of the derivative in r̃ and z

respectively while the primes over the functions f̃ , ã, b̃ denotes the derivative with respect

to r̃. The function g(r̃) is defined as g(r̃) = r2
h + r̃2.

We integrated the system of non-linear partial differential equations for some values of

the cosmological constant with the solver Fidisol [23] based on a Newton-Raphson method,

supplemented with the following boundary conditions

∂r̃Ã(0, z) = 0 , ∂r̃C̃(0, z) = 0, B̃(0, z) − Ã(0, z) = d0

Ã(∞, z) = 0 , B̃(∞, z) = 0 , C̃(∞, z) = 0, (7.7)

∂zÃ(r̃, 0) = 0 , ∂zB̃(r̃, 0) = 0 , ∂zC̃(r̃, 0) = 0,

∂zÃ(r̃, L) = 0 , ∂zB̃(r̃, L) = 0 , ∂zC̃(r̃, L) = 0,

L being the critical length given by the first order analysis, L = 2π/k. These boundary

conditions are similar to the one used in the asymptotically locally flat non uniform black

string problem [24, 25].

The parameter d0 is related to the temperature of the non uniform black hole TNU
H

according to

TNU
H = e−d0TU

H , (7.8)

TU
H being the temperature of the background uniform solution.

Note that here we keep the length L fixed and vary the temperature, leading to a non

uniform solution with the critical length and different temperature than the background

uniform solution. Note also that the entropy SNU changes along the non uniform branch

– 11 –
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Figure 3: Embedding of the horizon surface in a three dimensional Euclidean space for rh =

1, Λ = −0, 1. Each points on the surface represents a S3 sphere. The equation of the surface in

cylindrical coordinate (ρ, θ, z) is given by ρ = rheC(rh,z/L).

and is given by

SNU = SU

∫ L

0
eB̃(0,z)+C̃(0,z)dz, (7.9)

SU being the entropy of the background uniform phase.

By construction, equations (7.4), (7.5) and (7.6) admit the trivial solution Ã = B̃ =

C̃ = 0 for d0 = 0. This was checked numerically providing a crosscheck of our equations.

We started with the trivial solution as an initial guess and gradually increased the value

of d0, but the solver failed to provide a convincing solution. Instead, starting with a

combination of the trivial solution and of the first order solution and a small but non

vanishing value of the parameter d0 leads to a consistent results, which are numerically

robust. It has been checked that in the limit where d0 goes to zero, the trivial solution

is recovered, connecting the non-uniform black string phase to the uniform black string.

When d0 is increased, the solutions develop a more and more pronounced extremum for

z = L/2, suggesting a transition to a localised black hole; this is shown in figure 3 where

we plot an embedding of the horizon in R
3 for Λ = −0, 1 and different values of d0.

We compared the value of the corrections on the horizon quantities coming from the

perturbative approach and the same values computed from the non perturbative approach

– 12 –
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Figure 4: The ratio of the specific heat (δS/δTH) computed with the perturbative approach and

with the non perturbative approach. In the figure, NU refers to the non perturbative solution while

U refers to the perturbative solution. For small values of d0, the ration is close to one.

Figure 5: The value of λ as a function of the parameter d0 for rh = 1, L = 2π/k, where k is the

critical wavenumber and different values of Λ. The value of λ increases quicker with d0 for larger

negative values of the cosmological constant.

and it appeared that our results are consistent, providing a crosscheck of both the pertur-

bative and non perturbative solutions. This is shown in figure 4 for three values of the

cosmological constant.

We computed the deformation parameter [11] λ = Rmax/Rmin − 1, with Rmax =

max(rheC(rh,z)), Rmin = min(rheC(rh,z)). It appeared that the value of λ increases quicker

with d0 for larger negative values of the cosmological constant; this is shown in figure 5.

It must be stressed that the numerical investigation was plagued by several difficulties,

in particular, the solver was very sensitive to the mesh and failed to provide reasonable

solutions once the value of the cosmological constant is large, this can be due to the fact that

the value of the background solution becomes very high for large values of the cosmological

constant, forcing the program to deal with extremely small numbers for the non uniform

fields (recall that they go to zero asymptotically) and extremely large numbers for the

background fields (which diverge like r2). This is the reason why we could even with many
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difficulties investigate the solution up to only Λ = −0, 3. Note also that the precision of the

solutions is of the order of 5% with a 40× 81 mesh for z × r̃, uniform in the z direction; it

is possible to reduce this error by considering a denser mesh. However, it has been checked

that the results presented here are compatible with results obtained from a denser mesh

(within the numerical error). Let us finally mention the fact that the mass and tension

can be in principle computed since the asymptotic of the full solution should follow the

Fefferman Graham expansion. However, it turned out that the useful subleading coefficients

were impossible to extract in our case. However, it should be possible to integrate the Smarr

relation and the first law starting from the uniform phase and integrating along the non

uniform branch, but we didn’t have data enough in order to extract precise values of the

mass and tension, even at the background level for the reasons explained in section 5.

8. Conclusion

We have integrated the non uniform black strings equations in AdS up to second order in

perturbation theory for many number of dimensions. We investigated the thermodynamical

properties of these perturbative non uniform solutions and found evidences for the existence

of a new stable phase of non uniform black strings. This new phase has the property that

the non uniform black string length is of the order of the AdS radius. We propose the

terminology long and short AdS black strings in contrast with the small and big AdS black

strings terminology. The small (resp. large) black strings are characterised by a small

horizon radius - AdS length ratio (resp. of order one and larger); the short (resp long)

non uniform black strings are characterised by a small length in the extra direction - AdS

radius ratio (resp. of order one and larger). This new phase is not present in the uniform

case where all the thermodynamical quantities can be defined per unit length, so that

the length plays a spectator role. For non uniform black strings, the length of the extra

direction appears in a non trivial way in the definition of the thermodynamical quantities.

We were not able to investigate the problem of (ℓ-depending) critical dimension here

(see [26] for asymptotically locally flat spacetime). The problem comes from the extraction

of numerical factors needed in order to construct the conserved global quantities. A possible

alternative was to construct these quantities by integrating the first law of thermodynamics;

this works qualitatively well except in the region of small horizon radius-AdS length ratio.

Unfortunately, this is precisely the region needed. A reconsideration of the numerical

technique is needed in order to solve this problem.

However, we believe these new phases of non uniform black string to be strongly related

to the occurrence of critical dimensions in canonical ensemble. Moreover, the change of

sign in the temperature correction should translate in a change of sign in rescaled mass

correction in a rescaled mass-relative tension diagram; resulting if true in a connection with

critical dimension in microcanonical ensemble.

Another interesting aspect of these new phases is the connection with the boundary

conformal field theory. Our results suggests the existence of a stable non uniform long

configuration in a S1 × Sd−3 spatial background in the CFT side.
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We also gave some preliminary results on the full nonlinear problem’s solution. Despite

of our efforts, we faced many difficulties in the investigation of the solutions, especially for

larger negative values of the cosmological constant. However, our non perturbative results

confirm the perturbative solutions, and indicate a possible transition to a localised black

hole system. Unfortunately, we could not check the existence of the thermodynamically

stable phase, predicted by the perturbative analysis. Clearly, more efforts should be done

and a systematic investigation of the set of parameter should be investigated in the non

perturbative regime.

Finally, let us give some interesting perspectives to this work. One is the hunt of

critical dimensions. An interesting question to address would be to investigate whether

these sable long non uniform black strings could be the endpoint of the unstable AdS

black string with corresponding length decay. This should be numerically easier than

problems involving topology changes and might be of peculiar relevance in the context of

AdS/CFT correspondence.
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